'Weak Dependency Graph [60.0]' ------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { U11(tt(), M, N) -> U12(tt(), activate(M), activate(N)) , U12(tt(), M, N) -> s(plus(activate(N), activate(M))) , plus(N, 0()) -> N , plus(N, s(M)) -> U11(tt(), M, N) , activate(X) -> X} Details: We have computed the following set of weak (innermost) dependency pairs: { U11^#(tt(), M, N) -> c_0(U12^#(tt(), activate(M), activate(N))) , U12^#(tt(), M, N) -> c_1(plus^#(activate(N), activate(M))) , plus^#(N, 0()) -> c_2() , plus^#(N, s(M)) -> c_3(U11^#(tt(), M, N)) , activate^#(X) -> c_4()} The usable rules are: {activate(X) -> X} The estimated dependency graph contains the following edges: {U11^#(tt(), M, N) -> c_0(U12^#(tt(), activate(M), activate(N)))} ==> {U12^#(tt(), M, N) -> c_1(plus^#(activate(N), activate(M)))} {U12^#(tt(), M, N) -> c_1(plus^#(activate(N), activate(M)))} ==> {plus^#(N, s(M)) -> c_3(U11^#(tt(), M, N))} {U12^#(tt(), M, N) -> c_1(plus^#(activate(N), activate(M)))} ==> {plus^#(N, 0()) -> c_2()} {plus^#(N, s(M)) -> c_3(U11^#(tt(), M, N))} ==> {U11^#(tt(), M, N) -> c_0(U12^#(tt(), activate(M), activate(N)))} We consider the following path(s): 1) { U11^#(tt(), M, N) -> c_0(U12^#(tt(), activate(M), activate(N))) , plus^#(N, s(M)) -> c_3(U11^#(tt(), M, N)) , U12^#(tt(), M, N) -> c_1(plus^#(activate(N), activate(M)))} The usable rules for this path are the following: {activate(X) -> X} We have oriented the usable rules with the following strongly linear interpretation: Interpretation Functions: U11(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] tt() = [0] U12(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] activate(x1) = [1] x1 + [4] s(x1) = [0] x1 + [0] plus(x1, x2) = [0] x1 + [0] x2 + [0] 0() = [0] U11^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] c_0(x1) = [0] x1 + [0] U12^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] c_1(x1) = [0] x1 + [0] plus^#(x1, x2) = [0] x1 + [0] x2 + [0] c_2() = [0] c_3(x1) = [0] x1 + [0] activate^#(x1) = [0] x1 + [0] c_4() = [0] We have applied the subprocessor on the resulting DP-problem: 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: { U11^#(tt(), M, N) -> c_0(U12^#(tt(), activate(M), activate(N))) , plus^#(N, s(M)) -> c_3(U11^#(tt(), M, N)) , U12^#(tt(), M, N) -> c_1(plus^#(activate(N), activate(M)))} Weak Rules: {activate(X) -> X} Details: We apply the weight gap principle, strictly orienting the rules {plus^#(N, s(M)) -> c_3(U11^#(tt(), M, N))} and weakly orienting the rules {activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {plus^#(N, s(M)) -> c_3(U11^#(tt(), M, N))} Details: Interpretation Functions: U11(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] tt() = [0] U12(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] activate(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] plus(x1, x2) = [0] x1 + [0] x2 + [0] 0() = [0] U11^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1] c_0(x1) = [1] x1 + [1] U12^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c_1(x1) = [1] x1 + [0] plus^#(x1, x2) = [1] x1 + [1] x2 + [9] c_2() = [0] c_3(x1) = [1] x1 + [1] activate^#(x1) = [0] x1 + [0] c_4() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {U11^#(tt(), M, N) -> c_0(U12^#(tt(), activate(M), activate(N)))} and weakly orienting the rules { plus^#(N, s(M)) -> c_3(U11^#(tt(), M, N)) , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {U11^#(tt(), M, N) -> c_0(U12^#(tt(), activate(M), activate(N)))} Details: Interpretation Functions: U11(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] tt() = [0] U12(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] activate(x1) = [1] x1 + [0] s(x1) = [1] x1 + [8] plus(x1, x2) = [0] x1 + [0] x2 + [0] 0() = [0] U11^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1] c_0(x1) = [1] x1 + [0] U12^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c_1(x1) = [1] x1 + [1] plus^#(x1, x2) = [1] x1 + [1] x2 + [0] c_2() = [0] c_3(x1) = [1] x1 + [3] activate^#(x1) = [0] x1 + [0] c_4() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {U12^#(tt(), M, N) -> c_1(plus^#(activate(N), activate(M)))} and weakly orienting the rules { U11^#(tt(), M, N) -> c_0(U12^#(tt(), activate(M), activate(N))) , plus^#(N, s(M)) -> c_3(U11^#(tt(), M, N)) , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {U12^#(tt(), M, N) -> c_1(plus^#(activate(N), activate(M)))} Details: Interpretation Functions: U11(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] tt() = [0] U12(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] activate(x1) = [1] x1 + [0] s(x1) = [1] x1 + [8] plus(x1, x2) = [0] x1 + [0] x2 + [0] 0() = [0] U11^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1] c_0(x1) = [1] x1 + [0] U12^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1] c_1(x1) = [1] x1 + [0] plus^#(x1, x2) = [1] x1 + [1] x2 + [0] c_2() = [0] c_3(x1) = [1] x1 + [3] activate^#(x1) = [0] x1 + [0] c_4() = [0] Finally we apply the subprocessor 'Empty TRS' ----------- Answer: YES(?,O(1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {} Weak Rules: { U12^#(tt(), M, N) -> c_1(plus^#(activate(N), activate(M))) , U11^#(tt(), M, N) -> c_0(U12^#(tt(), activate(M), activate(N))) , plus^#(N, s(M)) -> c_3(U11^#(tt(), M, N)) , activate(X) -> X} Details: The given problem does not contain any strict rules 2) { U11^#(tt(), M, N) -> c_0(U12^#(tt(), activate(M), activate(N))) , plus^#(N, s(M)) -> c_3(U11^#(tt(), M, N)) , U12^#(tt(), M, N) -> c_1(plus^#(activate(N), activate(M))) , plus^#(N, 0()) -> c_2()} The usable rules for this path are the following: {activate(X) -> X} We have oriented the usable rules with the following strongly linear interpretation: Interpretation Functions: U11(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] tt() = [0] U12(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] activate(x1) = [1] x1 + [4] s(x1) = [0] x1 + [0] plus(x1, x2) = [0] x1 + [0] x2 + [0] 0() = [0] U11^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] c_0(x1) = [0] x1 + [0] U12^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] c_1(x1) = [0] x1 + [0] plus^#(x1, x2) = [0] x1 + [0] x2 + [0] c_2() = [0] c_3(x1) = [0] x1 + [0] activate^#(x1) = [0] x1 + [0] c_4() = [0] We have applied the subprocessor on the resulting DP-problem: 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {plus^#(N, 0()) -> c_2()} Weak Rules: { activate(X) -> X , U11^#(tt(), M, N) -> c_0(U12^#(tt(), activate(M), activate(N))) , plus^#(N, s(M)) -> c_3(U11^#(tt(), M, N)) , U12^#(tt(), M, N) -> c_1(plus^#(activate(N), activate(M)))} Details: We apply the weight gap principle, strictly orienting the rules {plus^#(N, 0()) -> c_2()} and weakly orienting the rules { activate(X) -> X , U11^#(tt(), M, N) -> c_0(U12^#(tt(), activate(M), activate(N))) , plus^#(N, s(M)) -> c_3(U11^#(tt(), M, N)) , U12^#(tt(), M, N) -> c_1(plus^#(activate(N), activate(M)))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {plus^#(N, 0()) -> c_2()} Details: Interpretation Functions: U11(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] tt() = [0] U12(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] activate(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] plus(x1, x2) = [0] x1 + [0] x2 + [0] 0() = [0] U11^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1] c_0(x1) = [1] x1 + [0] U12^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1] c_1(x1) = [1] x1 + [0] plus^#(x1, x2) = [1] x1 + [1] x2 + [1] c_2() = [0] c_3(x1) = [1] x1 + [0] activate^#(x1) = [0] x1 + [0] c_4() = [0] Finally we apply the subprocessor 'Empty TRS' ----------- Answer: YES(?,O(1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {} Weak Rules: { plus^#(N, 0()) -> c_2() , activate(X) -> X , U11^#(tt(), M, N) -> c_0(U12^#(tt(), activate(M), activate(N))) , plus^#(N, s(M)) -> c_3(U11^#(tt(), M, N)) , U12^#(tt(), M, N) -> c_1(plus^#(activate(N), activate(M)))} Details: The given problem does not contain any strict rules 3) {activate^#(X) -> c_4()} The usable rules for this path are empty. We have oriented the usable rules with the following strongly linear interpretation: Interpretation Functions: U11(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] tt() = [0] U12(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] activate(x1) = [0] x1 + [0] s(x1) = [0] x1 + [0] plus(x1, x2) = [0] x1 + [0] x2 + [0] 0() = [0] U11^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] c_0(x1) = [0] x1 + [0] U12^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] c_1(x1) = [0] x1 + [0] plus^#(x1, x2) = [0] x1 + [0] x2 + [0] c_2() = [0] c_3(x1) = [0] x1 + [0] activate^#(x1) = [0] x1 + [0] c_4() = [0] We have applied the subprocessor on the resulting DP-problem: 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {activate^#(X) -> c_4()} Weak Rules: {} Details: We apply the weight gap principle, strictly orienting the rules {activate^#(X) -> c_4()} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {activate^#(X) -> c_4()} Details: Interpretation Functions: U11(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] tt() = [0] U12(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] activate(x1) = [0] x1 + [0] s(x1) = [0] x1 + [0] plus(x1, x2) = [0] x1 + [0] x2 + [0] 0() = [0] U11^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] c_0(x1) = [0] x1 + [0] U12^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] c_1(x1) = [0] x1 + [0] plus^#(x1, x2) = [0] x1 + [0] x2 + [0] c_2() = [0] c_3(x1) = [0] x1 + [0] activate^#(x1) = [1] x1 + [4] c_4() = [0] Finally we apply the subprocessor 'Empty TRS' ----------- Answer: YES(?,O(1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {} Weak Rules: {activate^#(X) -> c_4()} Details: The given problem does not contain any strict rules